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A simple pseudospectral method is presented for the numerical solu-
tion of linear, differential eigenvalue problems. The method does not
praduce the spurious eigenvaiues which generally occur when such
problems are solved by the spectral tau method. The pseudospectral
method is presented using two model problems, and the presentation
contains a useful algorithm for the computation of the spectral differen-
tiation matrices at general collocation peoints. Numerical resuits are
offered for a set of benchmark problems, including the Orr—Sommerfeld
equation for stability of plane Poiseuiile flow between parallel plates.
The results indicate that the new pseudospectral method is comparabie
in accuracy to the tau method.  © 1994 Academic Press. Inc.

1. INTRODUCTION

Spectral methods offer viable alternatives to finite dif-
ference and finite element methods for solving differential
equations and differential eigenvalue problems [17]. Since
Orszag’s influential paper [6] spectral methods—par-
ticularly of the spectral tau variety—have proven to be
efficient techniques for providing accurate soluntions to
eigenvaiue problems which arise in hydrodynamic stability
calculations. However, a disadvantage of the spectral tau
method is that it produces spurious (unstable) eigenvalues
which are consequences of the method of discretisation. The
occurrence of spurious eigenvalues has been discussed by
many authors, and the reader is referred to the recent papers
by Gardner et al. [27 and McFadden er al. {5] and to
references therein.

It is well known that among spectral methods the
pseudospectral approach is especially attractive, owing to
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the ease with which it can be applied to variable-coefficient
problems and nonlinear problems. For eigenvalue problems
the pscudospectral approximation is less straightforward
than the spectral tau approximation if the interpolating
polynomial is not chosen properly. Canuto er al. [1]
illustrate the difficulties by discussing pseudospectral
approximations to Orr-Sommerfeld equations. Of the three
approximations which they present, only the one devised by
Herbert (31 has been used in hydrodynamic stability
calculations. Herbert found his approximation to be
comparable in accuracy to the spectral tav approximation,
but it produces spurious cigenvalues.

The objective of this paper 1s to present an extremely
simple pseudospectral method for eigenvalue problems with
Dirichlet boundary conditions (also called damped
boundary conditions in plate deflection theory). Several
numerical examples are presented which show that the
method produces no spurious eigenvalues and that it is
comparable in accuracy to the spectral tau method.,

In Section 2 of the paper we describe the method using
two model eigenvalue problems. Section 3 deals with the
calculation of the pseudospectral differentiation matrices for
general collocation points. Section 4 contains numerical
results for several eigenvalue problems, including the
Orr-Sommerfeld problem for plane Poiseuilie flow. Con-
clusions and comments are presented in Section 5. An
appendix is included which contains a simple preconditioner
for pseudospectral approximations to nth-order differential
operators in one dimension. This preconditioner is very
effective in reducing the condition number of a pseudo-
spectral differentiation matrix. Here it is used to scale the
condition numbers of matrices produced by applying the
pseudospectral method to gigenvalue problems.

0021-9991/94 $6.00
Copyright © 1994 by Academic Press, Ine.
All rights of reproduction in any form reserved,



400

2. A PSEUDOSPECTRAL METHOD FOR SOLVING
EIGENVALUE PROBLEMS

In Gardner ez al [2] and McFadden et al [5] the
standard spectral tau approximations to several problems
are observed to have spurious eigenvalues. Two of these
problems are used in this section to describe our
pseudospectral method.

Throughout this paper it is assumed that'the independent
variable x is in the interval [ —1, 1] and the collocation
points are

X1 =—1<x,< - <xy_;<xy=Ll (2.1)
The symbol P{*# denotes the Jacobi polynomial of degree n
with parameters & and . We denote the Lagrange inter-
polating polynomial for points (2.1) by Lix), | <k<N;
that is,

Yox—x,
I{x)= }_11 i x, (2.2)
itk

2.1. ExampLe 1. {A fourth-order eigenvalue problem).
Consider the eigenvalue problem

urﬂl + Run’ﬂ — Suﬂ’

ul—D=u'(-1)=u(1)=u'(1)=0,

—1<x=<l, (2.3)

(2.4)

where u is the unknown function, R is a real parameter, s is
the eigenparameter, and a prime denotes differentiation
with respect to x. Problem (2.3)-(2.4) is sufficiently simple
to be solved analytically, while retaining the essential
features necessary to illustrate the application of the
pseudospectral method. The eigencondition for this
problem is [2]
2 vzl _ cosh(R? + 45)1”2:1
(R* +4s) [1 T eohR

2s sinh(R? + 45)'72 o, (2.5)
cosh R

To illustrate our pseudospectral approximation to this
problem we make use of the two interpolation problems
which are presented below. Details concerning the inter-
polation may be found in Huang and Sloan [4]:

(i) Find the polynomial " of degree N + 1 such that

u™(x;)=u(x;} 2€ i N—1,
WMy =u(+1)=0,

(Y (£ D)= (£1)=0.

(2.6)
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~ The solution of (2.6) is given by

N1

W)= Y uphx), (2.7)
k=2
where 1, = u(x,) and
1= z
hulx) = El fii)) (x). (2.8)

(ii) Find the polynomial #" of degree N — 1 such that

a¥(x;)=u(x,), 2<jE N1,
’ ! (2.9)
A l)=u(£1)=0.
The solution of (2.9) is given by
N—1
a(x)= Y w (), (2.10)
k=2

It is worth noting that #™(x} is often used for fourth-ordet
differential equations with boundary conditions u(+1)=
#'(+1)=0 and #"(x) is often used for second-order dif-
ferential equations with boundary conditions u(+1)=0.
See, for example, Huang and Sloan [4] and Canute
etal [1].

Now the pseudospectral scheme is considered for
{2.3>-(2.4). 1t is defined by the collocation equations

QMUN dluN 2&1’\1
ey {(x}+R—=(x;}=s vy (x;),

o 2<j<N-1.

(2.11)

The key feature of this scheme is that it uses two distinct
interpolation polynomials. The degree of the polynomial
which approximates the second-order derivative term on
the right-hand side of (2.3) is lower by two than the degree
of the polynomial which approximates the other terms in
the equation. This approach has characteristics in common
with the modified tau method of McFadden et al. [5]. In
applying [57] to {2.3), v is approximated by a truncated
Chebyshev series of degree N, with coefficients which
we may denote by aq, 4,. ..., ay- Orthogonality properties
of Chebyshev polynomials yield equations relating the
Chebyshev coefficients of the terms in (2.3), and these coeffi-
cients are expressed as expansions in 4, 4, ..., dy. The key
feature in [5] is that the expansions of the Chebyshev
coefficients of the second-order derivative term are modified
by neglecting a,_, and a,: the second-order derivative
term is therefore expressed in terms of the coefficients of a
truncated Chebyshev series of degree N — 2.
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In the sense outlined above, Eq. (2.11) might be regarded
as a pseudospectral analogue of Eq. (7a} in [5]. However,
(2.11) seems to adopt a more natural viewpoint, since #"(x)
is simply the standard pseudospectral approximation
to the second-order derivative operator subject to the
homogeneous conditions #"( + 1) = 0. The limiting solution
as |s| — oo is clearly #¥{x)=0.

We now return to Eq. (2.11). Let

a‘h d3h
Aj—l.k—s = Fka (xj) +R dxsk (xj)’
(2.12)
d*l, .
ijl.k—l=aj(xj)s 2k, jsN-1,
u= [y, o tiy_y]" {2.13)

Making use of (2.7}, (2.8), and (2.10) we may write (2.11)
as an (N-—2)x(N—2) generalised matrix eigenvalue
preblem of the form

Au=sBu. (2.14)
Equation (2.14) may be solved by any routine for
generalised eigenvalue problems.

It should be noted that the condition numbers of
matrices 4 and B—especially A—may be huge in some
cases. For such cases, the solution of (2.14) will suffer from
roundoff error, and overflow may even occur. A simple
preconditioner, D, is described in the Appendix which
permits (2.14) to be replaced by the scaled system

DAu=sDBu, (2.15)
where DA has a much lower condition number than 4. The
scaled system (2.15) was used in all our calculations and it
was found that D is extremely effective.

The calculation of the differentiation matrices 4 and B for
the general collocation points x;, 1<j<N, will be
discussed in Section 3 of this paper. Numerical examples of

the use of the pseudospectral method proposed here will be
presented in Section 4.

2.2, ExamPLE 2. (A sixth-order eigenvalue problem).
Another example used to illustrate our method is

dou  d*u

fu_g248  lex<l, .

=i l<x< (2.16)
u(t)y=e'{x)=u"(£1)}=0. (2.17)

It is shown in McFadden ez al. [5] that the spectral tau
discretisation of (2.16} and (2.17) has four spurious
eigenvalues of which two are complex conjugate pairs
with Re{s) <0, but Im(s) #0. As in the case of Example 1
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we illustrate the pscudospectral approximation using an
interpolation problem.

Consider the polynomial #"(x) of degree N+ 3 inter-
polating the data

w=u(x), 2<j<N-—I,

(2.18)
ut=W'(£)=u"(£1)=0,

and the polynomial #¥(x) of degree N + | interpolating the
data

u;=u(x,), 2 N-—1,

(2.19)
ulx)y=u{x1)=0.

It is shown in Huang and Sloan [4] that »"¥(x) may be
expressed as

N—1
uM(x)= 3 wuehi(x), (2.20)
k=2
where
~ (=X
R0 = T ) (2.21)
and #™(x) has the form
N—1
a¥(x)= 3, uchilx), (2.22)
k=2

where h,(x), 2<k<N-—1, arc defined by (2.8). The
pseudospectral approximation to (2.16)-(2.17) is defined by
the collocation equations

a'(’uN d4ﬁN -
—w)=s—(x),  2<j<N-L (223)
If we denote
d°h
Aj—l,k71=ﬁ(xj),
(2.24)

dh,

Bj—l.k71=W(xj)s 2<k jEN—1,

and u=[u,, .., uy_,]", we obtain the generalised matrix
eigenvalue problem

Au=sB8u, (2.25)
or the scaled eigenvalue problem,

DAu=sDBu, (2.26)
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corresponding to (2.23). The numerical results for this
example will be presented in Section 4.

From the two examples above it can be seen that the key
poirnts in our application of the pseudospectral method to
eigenvalue problems are the proper choice of interpolation
polynomials and the use of a different interpolating poly-
nomial for each side of the differential equation. This
approximation is extremely simple to useé for linear eigen-
value problems and even for nonlinear ones (nonlinear in
or s) with Dirichlet boundary conditions. The elimination
of spurious eigenvalues derives from the fact that the
matrix Bin (2.14} or (2.25) is definite. The definite property
of B is necessary, but not sulfficient, for the elimination of
spurious eigenvalues. The elimination is associated with the
proper choice of interpolating polynomial &#". It is readily
shown that if the same interpolating polynomial is used on
each side of the differential equation then the matrix B is
nearly singular. This near-singularity is the source of the
spuricus eigenvalues.

3. CALCULATION OF DIFFEREN"I:IAT]ON MATRICES

Before we report numerical results for the appiication of
the pseudospectral method te cigenvalue problems, we
consider how to calculate the derivatives of u” (¥ is a
certain interpolating polynomial} at collocation points, or
equivalently, how to calculate differentiation matrices such
as A and B in Section 2.

From the discussion in Section 2, we can consider the
general polynomial u™(x) of degree N+1_+r, —1, inter-
polating the data

w;= u(x,), 2gjsN-1
u=u"(-1)=0, O<v<i, (3.1)
ullt = u1) =0, O0<vgr,,

where /,>0 and r, =0 are certain integers. As shown in
Huang and Sloan [4], #"(x) may be expressed as

N—1

“N(»’;’) = Z Heh(x),

k=2

(32)

where

(T+x)" (1—x)™ 1.().

)= s T

(3.3)

3.1. The Fast Fourier Transform {(FFT) Method

When only a few eigenvalues of (2.14) and (2.25), or
(2.15) and (2.26), are required iterative methods of solution
are preferable. It is not necessary to form the complete
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matrices 4 and B. In this case the values (d™u®/dx™}(x,),
2<j< N—1, are needed for some specified integer M. If
(x;)}_, are chosen to be Chebyshev collocation points
({x}}5" are the zeros of P '-~"9)(x)} or Chebyshev-
Lobatto points ((x;)_," are the zeros of Pi/>)/*}(x)), the
FFT method can be applied.

To apply the FFT to calculate (d™u™/dx™)(x)),
2L i< N—1, wefirst let

My

= , 2k N—1, 34
% T (= v G4
and
N-—1
v(x) = Z vedplx), (3.5)
k=2

where v(x) is of degree N — 1. Then #"(x} can be rewritten
as

w(x)= (1 4+ x)" (1 = x)" p(x). (3.6)
It is known (see, for example, Canuto et al. [1]) that the
FFT can be employed in the evaluation of (d"s/dx"™}(x,),
25 j<N-—1, 0<m< M. Then using (3.6) it is casy to
calculate {d™u”/dx™)(x;), 2< j<N—1.

3.2. The Method Using the Differentiation Matrices of
Lagrange Interpolating Polynomials

In many cases the formation of (d™u”/dx*)(x)),
2< j< N— 1, by matrix multiplication is preferable to the
FFT method (see Solomonofl and Turkel [7]). Multiplying
by a matrix has the advantage that it is more flexible and it
is vectorisable. For example, both the location and the
number of the collocation points are arbitrary. In this case
we need to calculate the differentiation matrix 4 which is
defined by

_dYh,

dx™

A (x), 2<jksN-L (3.7)

Referring to the expressions {3.3) for A (x), 2<k<N— 1,1t

is obvious that the key point in calculating A is the evalua-

tion of (41, /dx")(x,), 2<j, k< N—1,and 0Sm< M.
Now we are in a position to discuss how to calculate

(d™l fdx™ ) x,).
Define

N

a=T] (xx—x)  1<k<N, (3.8)
oy
N 1

he=Y , 1<k <N, (3.9)
im1 XX
i®k



PSEUDOSPECTRAL METHOD

and
(m) m!k i
45 _dx (x;), 1<iksN, m=0,1,2, ..
(3.10)
Lemma 3.1, Form2 1, gy is defined by
m—l(_l)
(my __ M —
A e
N 1
X[,gl (x;—x)"~ ’}
i (3.11})
P G Gt R Gl D S )
Jk a, o N (xj_xk)m—.!"
J#k, 1<j,k<N.

Proof. First let us prove the first relation of (3.11). From
(2.2), we have

] N
L(xy=—T1] (x=x)
Qe iy
i#k
and, therefore,
)y ! (3.12)
de 2 x-x '
itk

From (3.12) and using the symbol Ci=rl/(r—s)lsl, we
have

dm[k( m—1 ’[k(x) ol d’”“’l_l !
= Z Chii dx’ ;1 dv""lf(’f xj)
i*k
nol L dx) & (=) = L)
-y ¢ :
P ™ % (e =)™
I
m—1 _1)”"1_"(?11—])! dllk(x) al !
=% T prapy (x—x)"="
/=0 ’ ik i
ik

Putting kK = jand x = x, in the above equation we obtain the
first relation of (3.11).
For the case j #k, we have

d™l.(x)
dx™

alk \:[x x,) H (x—x)]

i=1
ik, j

_ Y d"’[ ) ,(x)}
T a, dx” =% Xx—X,
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_ﬁ m f(,c ) dm ! Ij(x):l
" a, EO C dx!  dx" ' x—x,
e, A" 4" [ 1(x)
B k{(“*x’)dx’"(:x—xk M X — X

a (. d"[ L)
Z{“‘ X g [x—xk]

mo (= 1) = 1) A (x)
oy n a0
(x—x )"~}

Putting x = x; in the equation above we obtain the second
relation of (3.11}.

After some algebraic manipulation we obtain from (3.11)
the relations

N

q;jm)ﬁbq«m—n r;a(rﬂ'-_x)q;'m_n’
i
a.m
/Sy e P T W, (3.13)
jEk 1< j k<N
If we define
G =cqMay, 1<j k<N, m=0,1,.., (3.14)

where ¢ # 0 is a certain scaling factor, then (3.13) reads

N gtm=1)
-(m)_b ~(m—1y Ell
iy ;gl (xj_xi),
P}
..Jlr(n)k( ) [q(m—l) _}:n)ll]’ {315)
lsj,kéN, J#k, m=12 ..
For m=0 we have
§O=coya,  1<j k<N (3.16)

2N (multiplication or division) operations are required to
compute 4, and b,. Given a, and b,, SN operations are
required to find q},'("] from gy~ " for m>1 Then
(5M + 3)N? operations are requlred to construct matrix
¢} and about (6M +3)N? operations are needed to
construct g, m=0, 1, .., M.

4. NUMERICAL EXAMPLES

In this section two fourth-order and two sixth-order
differential eigenvalue problems are solved using the
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TABLEI

First Two Eigenvalues for Example 1 (R = 0) Generated by the Pseudospectral Method with Chebyshev—Lobatto Points and
Those Obtained in [2 ] Using Their Modified Chebyshev-Tau Method

[2] Present
N+1 s s s s
9 —938 700602 —20. 295078 —9.8 70467563383136 —20.1 2878236448789
14 "~ —9.869604 5 —20.1.290730 —9.86960440 2075734 —20.19072 797396664
19 —9.869604 31 —20.190728 6 —9.8696044010 90845 —20.1907285564 3102
24 —9.8696044 —20.190728 —9.8696044010 91274 —20.190728556426 84
29 —9.869504 7 —20.19072 9 —9.8696044010 93581 —20.19072855642 888
34 —9.8696 151 —20.19%072 9 —9.8696044010 95919 —20.190728556426 58
Note. Exact eigenvalues: 5, = —9.869604401089359; 5, = —20,19072855642663.

pseudospectral method of Section 2. The eigenvalues
obtained arc compared to exact or accepted eigenvalues and
to those obtained by other authors. The differentiation
matrices arc calculated using the method described in
Section 3.2. The resulting generalised matrix eigenvalue
problems are scaled by the diagonal preconditioners which
are described in the Appendix and the scaled generalised
matrix eigenvalue problems are solved using the routines
FO2BJF (for real matrices) or FO2GJF (for complex
matrices ) from the NAG library on a VAX 8650 computer.
All calculations were done nsing double precision (64-bit)
arithmetic.

ExampLE 1 (A fourth-order eigenvalue problem with a
third derivative term). Consider the cigenvalue problem
used as Example 1 in Section 2,

H”"-G-Rum=su",

u(£1)=u'(£1)=0.

—l<x<l,
(4.1)

The discretisations of this problem by the spectral tau
method when R=10 and R =4 are shown in Gardner
et al. [2] to have spurious eigenvalues.

Results using Chebyshev—Lobatto collocation points for
the sofution of problem (4.1) when R=0 and R=4 are
given in Tables I and II, respectively. Tables I and IT also
contain the results obtained by Gardner er al. [2], using
their modified Chebyshev—tau method and using single
precision (66-bit) arithmetic on a Cray-2 supercomputer.
The comparison can be done for polynomials of the same
degree int the pseudospectral approximation as in the spec-
tral tau method. The results in Tables I and I show that the
discretisation by the pseudospectral method has no
spurious eigenvalue and it is much more accurate than that
of modified Chebyshev—tau method in [2].

Figures 1a, 1b, and 2 show log,,|s{™ — 5],
log,p I8V —5,| for R=0, and log,, |s\" —3,] for R=4,
respectively, as functions of (N + 1) for the pseudospectral
method with three sets of collocation points: Chebyshev,
Legendre, and Chebyshev-Lobatto points ((x,)}_,' are
zeros of Py 'Y (x), PE-%(x) and PY/%)/¥(x), respec-
tively). It is obvious that the results obtained using these
scts of collocation points are very close. Here s, is the exact
value of the ith eigenvalue and s\ is the value computed
using the pseudospectral method based on polyno-
mials {2.7) and (2.10).

TABLE 11

First Two Eigenvalues for Example [ (R =4) Generated by the Pseudospectral Method with Chebyshev—Lobatto Points and
Those Obtained in [2 ] Using Their Modified Chebyshev-Tau Method

[2] Present
N+1 s s

9 —17.9 45354+ 9.4 908166 —17.9 2538900630421 + 9.4 63513830784185/
14 — 1791292 4+9458 3902f — 17512921 97234431 +9.45840 03139563461
19 — 1791292 24+94584014i —179129218001 5564 +9.45840144300 3609¢
24 —1791292 249458401 5i — 1791292180018 556 4+ 9.458401443007 839
29 — 1791292 2+ 9458401 9/ —179129218G018 723 + 945840144300 87581
34 —1791292 51+ 9545840 97i —17.91292180018 810 £ 9.45840144300 9625¢

Note.

Exact eigenvalues: s, , = —17.91292180018440 + 9.458401443007244. Spaces in numbers show the extent of agreement with exact values.
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X 10 5 20 25 30 35 N+l

Legendre

=12 p=

log, o5, -5,

N+l

-12 Legendre -

log,gls, ™5,

FIG. 1. (a) logy |9 — 5| as a function of N + 1 for problem (4.1)
with R=0. (b)log,, [s¥"" —s,| as a function of N+ 1 for problem (4.1)
with R=1,

ExamprLe 2. (A sixth-order eigenvalue problem). Con-
sider the eigenvalue problem used as Example 2 in
Section 2,

oSu d?u
dx® T axV

u(£1)=w(+1)=u"(+1)=0.

= —l<x<l,

(4.2)

e 1 N+l

10 s 20 75 30 35
—a Chebyshev
-4
-6
Chebyshev-Lobatto
-8
-10 Legendre
-12
logygls; ™05,

FIG. 2. log,, 5§ —s,| as a function of N+ 1 for problem (4.1) with
R=4,
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TABLE III

First Two Eigenvalues for Example 2 Generated by the
Pseudospectral Method with Chebyshev—Lobatto Points

N+3 s (¥

g --20. 27448865769315 — §4.00000000000001

12 -2 1.44588544085100 —3 4.67499895206012
18 —20.190728556 37254 —33.2174619 8708751
22 ~20.19072855642 984 —332174619142 7011
28 ~20.1907285564 9336 —33.21746191426 238
32 ~20.190728556 25974 —33.2174619142 5708
38 —20.15072855 950501 —33217461914 30863
Note. Exact eigenvalues:

&, = —20.19072855642663; 5, = —33.21746191426837.

Results obtained using Chebyshev-Lobatto points for
(4.2) are given in Table IIl. Figures 3a, b show
logo st — ;| and log, |st™ —s,|, respectively, as
functions of N + 3 for the pseudospectral method with three
sets of collocation points: Chebyshev, Legendre and
Chebyshev-Lobatto points. Here s\ is the value of the ith
eigenvalue computed using the pseudospectral method
based on polynomials (2.20) and (2.22).

The results show that the pseudospectral method has very
fast convergence and has no spurious eigenvalue. It is easy
to see that the calculations suffer from roundoff error when
N+ 3 222, Nevertheless, the computed solutions agree with
the exact solutions at least up to nine digits when
N+3=z18.

ExampLE 3. (The Orr-Semmerfeld stability equation
for plane Poiseuille flow). The Orr—Sommerfeld stability
equation for plane Poiscuille flow has been solved by a
variety of methods, including the spectral tau method {see
Orszag [6], Gardner et al. [2], McFadden er al. [5]). The
equation results from assuming that a velocity disturbance
of the form

V(x, », 1) = u(x) exp[io(y —s1)] (43)
perturbs the steady pressure-induced flow U(x)= (1 —x?).
between two infinite parailel plates located (in dimen-
sionless variables) at x= 1 1. The resulting linear stability
cquation is

[u'"’—262u”+0'4u]/(—fO'R)+ [U(u”—azu)— U”H]

=s(u" — a’u), —l<x<l, (4.4)
with boundary conditions
u(x1)=u'(£1)=0, (4.5)

where u is the amplitude of the velocity disturbance (defined
in (4.3)) and R is the Reynolds number.
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N+3 2

=12
logygs;™-s;l

2% 25 30 35 apN¥3

Chebyshev

FIG. 3. (a)log, |s$" —s,| as a function of N + 3 for problem (4.2). (b) log,, |55 — 5, | as a function of N + 3 for problem (4.2).

. " N

a 15 20 25 30 35 40
5 >€<1 Chebyshev-Lobatto

-4

Legendre

-6

-8
-10
log;gls,™-sy)

a 15 20 25 30 35 40 45 50
-1 Chebyshev
-2
-3
-4
Legendre
-6
Chebyshev-Lobatto

-7
-8
logsplsy ™-3,

N+1 b 45 S‘ONH
-1
-2 Chebyshev
3 Chebyshev-Lobatto
-4
-5
-6

Iogwls;(m-szl

FIG. 4. (a)log,,|s{¥ —s,| as a function of N + 1 for Orr-Sommerfeld problem (4.4)(4.5) with o = 1 and R= 10" (b} log,, |s{"" —s,} as a function
of N + 1 for Orr-Sommerfeld problem (4.4)+(4.5) with o =1 and R = 10

TABLE IV

First Two Eigenvalues for Example 3 (o = 1.00, R = 10,000) Generated by the Pseudospectral Method with
Chebyshev—Lobatto Points and Those Obtained in [2] Using Their Modified Chebyshev-Tau Method

N+

2]

SSN)

Present
s

Present
e

14
19
24
29
34
39
44
49

0. 52900096 +0. 22074414;
0. 73111753+ 0.0 96973658
0.2 4033386 + 0.00 64426763/
0.2375 7258 +0.0037 438271i
02375 5789 +0.0037 060033;
023752 741 +0.0037 419091

*

*

0. 36841258081 + 0.0 64876807911
0.237 09997536 + 0.00 4417892004
0.23 563796411 + 0.00 151181136i
0.237 20866786 4+ 0.003 32860850/
0.237 48476605+ 0.003 68618134i
023752 489827 +0.00373 265586/
0.237526 75297 + 0003739 21305/
0237526 51907 +0.00373967 171i

0. 27408233596 + 0.03376347334}

0. 72863350430 — 0.0 00096482657
0. 87829954112 — 0.0 1682408694/
0.9 5300865710 —0.0 2437870062i
0.964 53117558 —0.03 0663879961
0.96 365408185 —0.03 499614001¢
0964 71323576 —0.0351 2106936:
096463 578946 —0.03516 32746(

Note. Exact eigenvalues: 5, = 023752648882 + 0.00373967062:; s, = 0.9646309154 — 0.0351672775i.
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TABLE Y

First Two Eigenvalues for Example 4 Generated by the
Pseudospectral Method with Chebyshev-Lobatto Points

N+3 £ K1t

8 —23 1.5364345040102 —3359.999999999999
12 —237. 6992290474482 —T 74.6693699641236
18 —237.72106753 20906 —769.96348 24081218
22 —237.721067531 0667 — 7699634832419 8136
28 —237.721067531 6501 —769.96348324 09488
32 —237.7210675 278370 —769.963483241 2687
38 —237.7210675 205215 —769.9634832 398821
Note.  Exact eigenvalues:

5= —237.72106753111; 5, = —769.96348324190.

Problem (4.4)-{4.3) was solved for =100 and
R=10,000 using the pseudospectral method. Here the
pseudospectral method is based on approximations to the
left-hand side and right-hand side of (4.4) using polyno-
mials (2.7) and (2.10), respectively. The results for the first
two eigenvalues (arranged in order of decreasing imaginary
part) using Chebyshev-Lobatto points are presented in
Table IV. Convergence to the first eigenvalue can be com-
pared with that obtained by Gardner et al. [2], using their
modified Chebyshev—tau method. Qur results for the second
eigenvalue are comparable in accuracy to those obtained by
McFadden er ¢l. [5] (with a truncated Chebyshev series of
degree 50 they obtained the approximation 0.96462731 —
0.035169584).

From Table IV it can be seen that the pseudospectral
approximation to problem (4.4}-(4.5) for ¢=1.00 and
R = 10,000 has no spurious eigenvalue when N+ 1 = 19 and
is comparable in accuracy to the tau method. It is also
worth noting that both the pseudospectral method and the
tau method converge more slowly for this example than for
Examples 1 and 2. The reason for this will be the singular
nature of the cigenvalue problem caused by the large value
of R.

N+3

15 20 75 30 35 40

Chebyshev

-10

Chebyshev-Laobatto

loggls;™-s))
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Figures 4a, b show log,, s\ — 5| and log, |5 — 551,
respectively, as functions of (¥ + 1) for the pseudospectral

method with three sets of collocation points.

ExaMmPLE 4, (Another sixth-order eigenvalue problem).
Another sixth-order eigenvalue problem for which it was
shown in McFadden er ol [5] that the tau approximation
has spurious eigenvalues is

du__ b
dx® T ax¥

W) =w (1) =u"(£1)=0.

—s —~l<x<l,

(4.6)

Results for (4.6} generated by a pscudospectral method
like that used in Example 2 using Chebyshev-Lobatto
points are given in TableV. Figures5a,b show
log g [ —s,| and log,q |st¥ —s,|, respectively, as func-
tions of N + 3 for three sets of collocation points. The resuits
for (4.6) have nearly the same behaviour as those for
Example 2 (4.2). The computed solutions agree with the
exact ones at least up to eight digits when ¥+ 3 = 18.

5. CONCLUSIONS AND COMMENTS

We have presented a pseudospectral method for the
numerical solution of linear, differential eigenvalue
problems which, unlike the commonly used spectral tau
method, does not generate spurious eigenvalues. The
method is flexible in the sense that it deals with any
homogeneous Dirichlet boundary conditions and with
arbitrary interior collocation points. A useful algorithm
is also presented for the generation of pseudospectral
differentiation matrices at general collocation points.

Computations performed on four model problems
indicate that the pseudospectral method is at least as
accurate as the modified Chebyshev tau methed which was
recently proposed by Gardner ef al. [2]. This latter method

4 A
) \
b 10 NI5 20 25 30 35 a3
-2

=10

loggls;™-s,1

FIG. 5. (a)logg [s{"* —s,| as a function of & + 3 for problem (4.6). (b) log o }s$ — 5, | as a function of N + 3 for problem (4.6).
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is a modified spectral tau method which eliminates spurious
eigenvalues, and it is comparable in accuracy to the
standard spectral tau method.

The method which we have presented has the usual
advantages assoctated with pseudospectral methods: it is
easy to implement and it deals in a straightforward manner
with variable coefficients. We feel that it should prove useful
in flow stability calculations. Since the method does not
generate spurious (unstable) eigenvalues it may also prove
useful in time-dependent calculations.

APPENDIX: PRECONDITIONER FOR PSEUDOSPECTRAL
DIFFERENTIATION MATRICES

To simplify the presentation of the preconditioner D
which is introduced in (2.15), suppose the matrix A in (2.14)
is the pseudospectral approximation to the operator

ton=2% i o1, (A1)
dx
subject to the boundary conditions
¥ (—1)=10, O<pu<i,
(A.2)
u"(+1)=0, Ogvsr,,

where n= 1, {,= —1, and r,> —1 are integers such that
l,+r,+2=n (referring to Example 1, the situation above
would arise if we set R to zero and assumed the values n =4,
{,=r,=1). As shown in [4], the interpoiating polynomial
of degree at most N + n — 3 which satisfies conditions (A.2)
and assumes values u, = u(x,) at the interior collocation
points in the set (2.1) is given by

N—1

Nt x)= Y wehd(x).

k=2

(A.3)

The pseudospectral differentiation matrix LY is given by

d
(LONy==—(x), 2<kj<N—1, (Ad)
X

where
() = (14 x)=+ (1 —x)*! 7(x)
O x0T (=)™ wx(x—xe)
2<k<N—1, (A.5)
and
N—1
a(x)=[] (x—x,). (A.6)
i=2

HUANG AND SLOAN

Define the condition number k(L{) as

|4]
L) =1t AT
( * ] M’lmin ( )
where 1 is the eigenvalue of L{. It is known that k(L{))) =
O(N?) and k(L") = O(N*) as N - oo for general colloca-
tion points. We define a preconditioner for L) wich reduces
the condition number to O(N") as N — oo. Let

D=diag((1+x)"* ' (1—x,)"*,2<k<N—1) (A8)

and consider the eigenvalues of matrix DL, It is obvious
that the eigenproblem

DLWy =1, (A.9)
where v=[v,, .., vy _,]7, can be rewritten as
In+1 a1 d” N+n—3
(I+x)=*" (1 —x)"+' —
dx o
=¥ "3 (x,), 2€k€<N-—1, (A10)

where the polynomial vV *"~? of degree at most N +n — 3 is
given by
N-=-1
V)= Y vk (x). (A.11)
k=2

Noting that both sides of (A.10) are polynomials of degree
at most N+n— 3, we have

n

(1 +x)l,,+1 (1 _x)r,,+l %vNﬁ-n—li(x)

n—1

=¥ " (x)+r(x)} Y ax’
i=0

in[—-1,1].

(A.12)

We note that v 7 %(x) and the left-hand side of (A.12)
satisfy the boundary conditions (A.2). Hence the polyno-
mial =(x)3 ") a,x’ should satisfy the conditions (A.2);
therefore, because n{+1)#0, Y74 a,x’ should satisfy the
conditions {A.2} and this implies that a,=0, i=0, .., n— 1.
Thus, from (A.11) and (A.5) we have proved the following
theorem.

THEOREM A.l. The eigenvalues of the preconditioned
pseudospectral differentiation matrix DL are determined
by the eigenproblem

H

[ +2) 1 (1 —x)™* " p(x)]

xl‘!

=wp(x),  plx)ePy_s. (A.13)

Therefore, the eigenvalues of DL are independent of the
choice of collocation points.
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Remark. Note that the preconditioned matrix DL is
just the pseudospectral differentiation matrix of operator
(14+x)="' (1 —x)"*! (d"/dx") subject to (A.2). Then the
theorem implies that the eigenvalues of the differentiation
matrix are independent of the choice of collocation points!

THEOREM A.2. The eigenvalues of DL') are real and
given by

T, = ]'[ (k+1), 0<k<N-3 (Al14)

Therefore, the condition number of DLi;’ is

(L[”)) HN—T’-H

f=1

O(N"). (A.15)

The proof is fairly straightforward.

It may be shown that a similar reduction in condition
number may be achieved if the operator L™u in (A.1) is
replaced by

409

" diu

Py = Z ¢ (A.16)

where ¢, (i=0,1,.., n) are constants, ¢,#0, and u(x)
satisfies (A.2). The preconditioner D is also effective for a
wide class of linear differential operators involving smooth,
variable coefficients.
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